

ACCA Masterclass 2017

Frank Breuckmann

ESC

Disclosures

Nothing to disclose

Structure - overview

1st part

 Clinical scenario of a patient with chest pain admitted to our emergency department before introducing chest pain unit pathways

2nd part

 Current developments of chest pain unit certification in Germany and benchmarks from the German chest pain unit registry

Clinical case Anamnesis and body check

Age:

Gender:

Actual complaints:

Risk factors:

Medication:

Pre-existing diseases:

Vital signs:

53 years

male

sudden onset of atypical chest

pain (retrosternal discomfort)

2 hours before admission

arterial hypertension

diuretics

long-lasting infection of the upper

respiratory tract 2 months before

blood pressure 135-80mmHg, heart

rate 95bpm, oxygen saturation 98%

ECG at admission

- Signs of left ventricular hypertrophy
- Non-significant ST-elevation in the anterior leads

Clinical case Initial work-up

ECG at admission

TTE at admission

- Left ventricular hypertrophy
- Normal ejection fraction without any wall motion abnormalities
- Mild insufficiency of the aortic valve
- Aneurysm of the ascending aorta of 5.2cm in diameter

Clinical case Initial work-up

- ECG at admission
- TTE at admission
- Laboratory tests
 - High-sensitive troponin T: 0.035ng/ml
 - D-dimers:0.7mg/ml

Clinical case Differential diagnoses

Acute aortic syndrome

- Pro:aneurysm of the ascending aorta, non-ischemic pain, D-dimers
- Contra: no severe pain, no neurological signs, no malperfusion

Acute coronary syndrome

- Pro:therapy resistent chest pain, high-sensitive troponin T within the observation zone
- Contra: atypical discomfort, no specific ischemic signs on ECG, normal EF, no regional wall motion abnormalities

positive

Clinical case:

1. assumption: acute coronary syndrome

Coronary angiography

Clinical case:

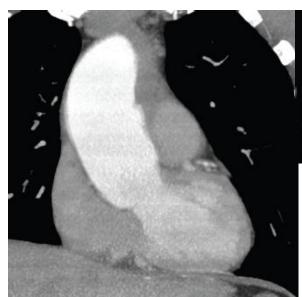
1. assumption: acute coronary syndrome

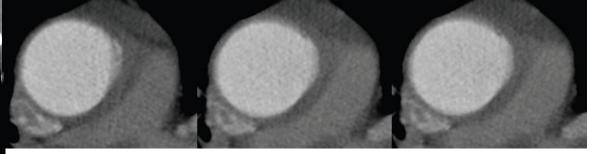
- Normal coronary tree
 - No stenosis, no obstruction, no culprit lesion

Clinical case

2. assumption: acute aortic syndrome

Computed tomography of the aorta





Clinical case

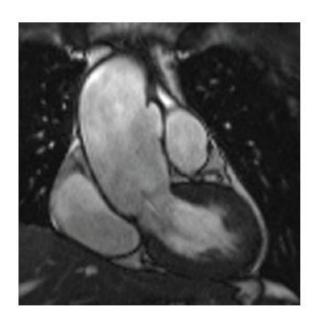
2. assumption: acute aortic syndrome

- Insufficient image quality due to repeated Search for a new differential diagnosis time of image acquisition
- small contrastision of the respiratory tracterior quadrant of the ascending aorta diagnosed as motion artifact

Clinical case:

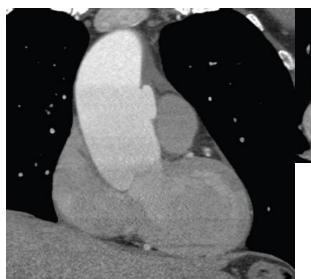
3. assumption: myocarditis

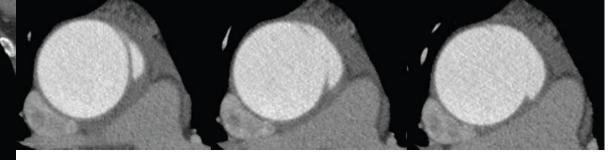
Cardiac magnetic resonance imaging



Clinical case:

3. assumption: myocarditis


- Double-oblique view of the cine-CMR
 - Ulcer-like lesion superior to the aortic root (left anterior aortic quadrant)
 - Same location as within the inital suspicious CT
- Confirmed by a repeated CT angiography of the complete aorta before sugery

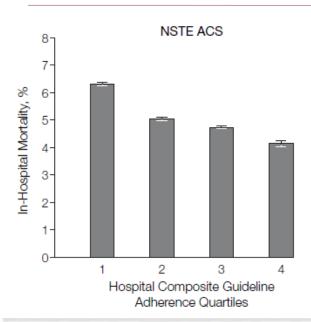


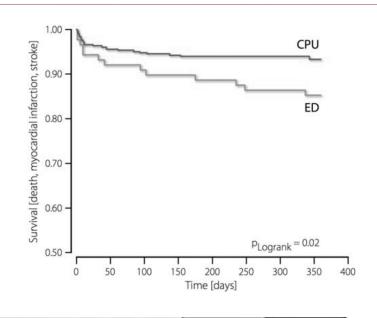
Clinical case Final diagnosis: penetrating aortic ulcer

- Only a few minutes following the second CT the patient suffered hemodynamic instability needing cardiopulmonary resuscitation
- Surgical site: progression to type A aortic dissection with inversion of the intima flap resulting in an occlusion of the supra-aortic limbs

Clinical case Critical review

Critics

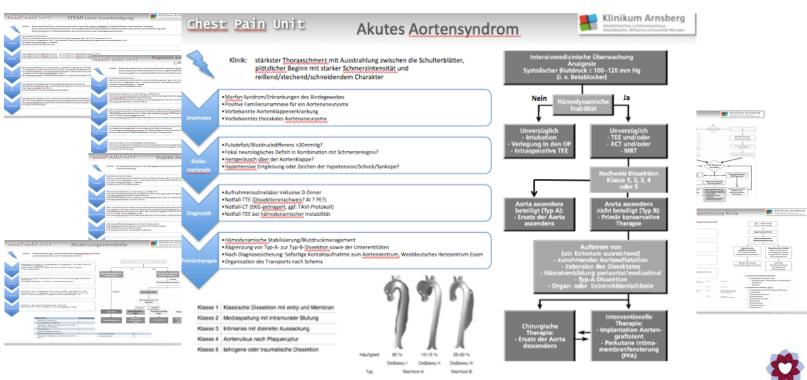

- Wrong initial triage with a life-threatening delay of therapy
- No risk scoring for acute aortic syndromes used, no further clinical evaluation (e.g. differences in blood pressure)
- A localized dissection membrane or ulcer-like lesion should have been assumed, but diagnosis failed by insufficient interpretation
- Second imaging study should have been performed at the time the first imaging was non-diagnostic (or alternative diagnostic measures) if the clinical suspicion remains high


Main problem

 No dedicated pathway on AAS in place at this time teaching the aforementioned points

Process improvement Effects in chest pain patients

ACS-Patienten sollten bevorzugt in ausgewiesenen "Chest Pain Units" oder spezialisierten Intensiveinheiten aufgenommen werden.



CPU pathways Now we are better...

CPU movement in Germany Principles and timeline

Main target:

To ensure a systematic protocol-driven uniform standard-of care

Start:

- Dedicated certification criteria were worked out by the German Cardiac Society (GCS) in 2008
- Key elements of certification include characteristic locations, equipment, diagnostic and therapeutic strategies, cooperations, staff education, organization
- First update 2015

Table 1 Spatial requirements for the establishment of a CPU

Criterium	Minimum requirement	Table 6 Education and training of the CPU				
Rooms	Table 2 Technical requ	Criterium	Minimum requirements	Additional recommendation	Additional	
Bed capacity	Criterium	Physicians	At least 2 years internal medicine/cardiology experience, adequate		recommendation	
	12-lead ECG	_	intensive care experience, echocardiography training		Additional	
Access	Blood pressure	Consultant	Cardiologist	Continuous presence of a specialist in the CPU	algorithms	
Catheterization laboratory	measurement	Nurses	Special CPU training	"CPU Nurse" title		
Resuscitation/ emergency concept	TTE	Training	Emergency training at least twice a year, case conferences			
	Rhythm monitoring Resuscitation	Quality control	Feedback mechanisms for the quality of the diagnosis and therapy	Participation in the CPU registry		
•	erations und partners of a	CPU	irnes			
	·		_			

Table 5	Cooperations	und	partners	of a	CPU
---------	--------------	-----	----------	------	-----

Criterium	Minimum requirement	Table 7 Organization of a CPU						
General emergency room	Available 24/7	Criterium	Minimum requirement	Additio	onal recommendation			
Emergency outpatient clinic	ergency outpatient clinic Integration of the CPU in the existing emergency structures		Specialist in cardiology					
Emergency physician	Preclinical STEMI program with direct of the patient to the catheterization lab	Physician Continual presence			Shift system guaranteeing the continual presence of a qualified staff member			
Intensive care unit	Available 24/7; transfer time <15 min	Consultants (cardiologists)	On call 24/7; response time <30 min		Continual presence			
Catheterization laboratory	Available 24/7, transfer <15 min		Present 24/7; maximally a 4:1 patient-to-nurse ratio		Continual presence			
Radiology	Chest X-ray (available 24/7)	Nurses						
Additional cooperations	CT (available 24/7) Cardiovascular and thoracic surgery	Other medical specialties	racic echocard	liography, ACS acu	te	60		

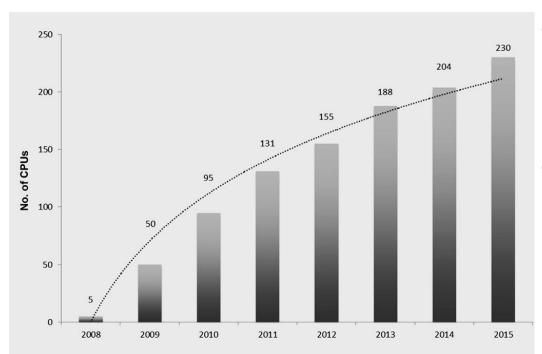
MRI magnetic resonance imaging

CPU certification Process of accreditation

Formal steps

- Application by the institution
- Formal checkup of the pre-submitted documentation
- Assessment of minimum requirements by an expert committee of the GCS
- Review of the facility's application, infrastructure, patient care, and each of the requirements according to the consensus document by an audit team on site

Certification


 An expert committee of the GCS finally awards certification with or without further conditions

CPUs in Germany Development since 2008

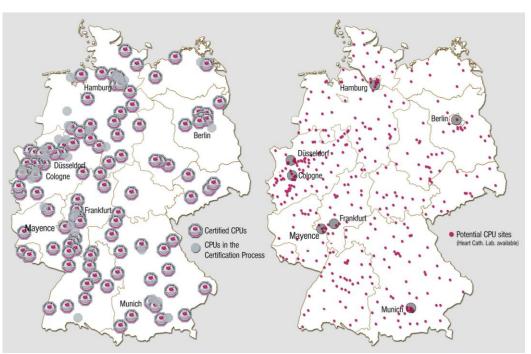
Goal:

 to implement a broad network in a minimum of time

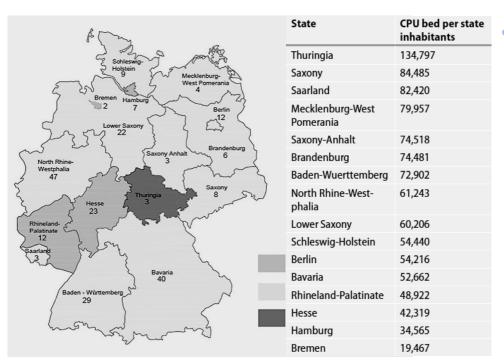
Estimations of sites needed:

initial: 300-400 sites

adapted: 250 sites


latest: 300 sites

CPUs in Germany Certified sites and total cath lab locations



- Current status end of 2016:
 - 250 certified CPUs across Germany
 - first certified CPUs outside Germany (Switzerland, Austria)

CPUs in Germany Local distribution and gap analysis

A0138n20slu6g(q25sticentified sites lute number less decisive

- than the ignerance of the border across ermany aps and support of mostly briage 1 CPU hed per 65 00 priagademic interventional
- hospitals high number of CPUs and CPU
- developments with madent recities aed ifricatsoria baocess
- most CPUs in university and academic hospitals
- certain undersupply in rural areas and some of the former eastern federal states

SOCIETY OF

German CPU-Registry A unique benchmarking tool

Established in December 2008

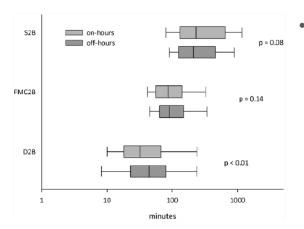
- Non-obligatory
- Central data collection by the Institute for Myocardial Infarction Research Foundation Ludwigshafen (IHF), Germany

Data collection on

 Demographics, clinical presentation, laboratory and diagnostic testings, diagnoses, time frames and a 3-months follow-up interview

Data from 40 centers from 32 cities

- Real-world database on the diagnosis and therapy of ACS in Germany
- Selection bias, only about 20% of the certified centers
- To present, approximately 35,000 patients included



Time intervals in STEMI patients:

- Symptom onset to admission: 128min (48-720min)
- First medical contact to admission: 58min (35-118min)
 - High preclinical delay, low admission rate by EMS

- Better data for off-hours
 - Symptom onset to admission significantly shorter during off-hours, fewer patients waited longer than 4 hours (33.0% vs. 43.1%)
 - Low proportion of self-referrals (15%), first medical contact to admission below 45min

CPU registry STEMI and troponin-positive NSTE-ACS

STEMI - critical time intervals

- First medical contact to balloon time: 86min on-hours vs. 90min off-hours
- Door to puncture time: 31min (11-75min)
- Door to balloon time daytime: 32min (18-66min)
- Door to balloon time off-hours: 44min (23-80min)

Troponin-positive NSTE-ACS

- Hospital admittance to intervention: 5h
- Guideline-adherent timing of coronary angiography: 88% (especially in patients at very high risk)

CPU registry Troponin-negative NSTE-ACS

Time intervals

- hospital admittance to intervention: 22h
- Urgent and early invasive strategy: 4:10h (7.7%)
- Early elective invasive strategy: 22:34h (16.9%)
- Late elective invasive strategy: 49:30h (12.4%)

Guideline-adherence

Overall guideline-conforming timing of invasive diagnostics: 38.2%

CPU registry Troponin-negative NSTE-ACS

	High risk*	(n=792)	Low risk*	Lowrisk* (n=366)			Overall guideline adherence (n=1158)		
Outcome	guideline-conform [§]	undertreatment	p-value	guideline-conform	overtreatment	p-value	adherent	inadherent	
	(PCI)	(conservative)		(conservative)	(PCI)				p-value
	[15.2%]	[53.2%]		[23.0%]	[8.6%]		[38.2%]	[61.8%]	
Death	1.1%	1.9%	0.47	0.4%	2.0%	0.12	0.7%	2.0%	0.08
Stroke	0%	1.0%	0.23	0.4%	1.1%	0.50	0.3%	1.0%	0.19
МІ	0.7%	1.0%	0.74	0.4%	0%	0.53	0.5%	0.8%	0.60
MACCE	2.0%	4.1%	0.21	1.3%	3.3%	0.25	1.6%	4.0%	< 0.05
PCI	19.9%	6.9%	<0.0001	2.2%	11.1%	<0.001 ⁺	9.3%	7.5%	0.32
CABG	0.7%	4.6%	< 0.05+	1.8%	5.6%	0.07	1.3%	4.7%	<0.01 ⁺
Revascularisation	20.5%	11.0%	<0.01+	4.0%	16.7%	<0.001*	10.6%	11.9%	0.53
CV rehosp	29.1%	24.5%	0.25	7.5%	31.1%	<0.0001*	16.1%	25.5%	< 0.001 ⁺
Total rehosp	35.8%	35.8%	1.00	20.0%	32.2%	0.08	29.3%	35.2%	0.13

CPU registry Community outreach and awareness

Problem

- Still many patients misinterpret symptoms of ACS
- Proportion of self-referral of up to one third
- Self-referrals have a patient-related additional delay of 4h (even though 13% STEMI or NSTEMI patients)
- Time interval between symptom onset and hospital admission: 4h
 - Strengthening community outreach will remain a major emphasis within the CPU certification effort

CPU experience in Germany Summary

- Very fast implementation of a nationwide CPU-network in Germany by the use of a uniform certification process
 - >250 CPUs in less than a decade
 - Still need for a more balanced distribution across the country
- Networking as a key step in the management acute chest pain
 - Outpatient care, GPs, EMS, hospitals
- Benchmarking necessary for process improvement
 - Data collection of >35.000 patients in Germany already (CPU registry)
- Time matters in STEMI and beyond
 - Necessity of guideline-adherence and adequate risk assessment for improvement of prognosis
- Good data on quality-of-care in STEMI and NSTEMI patients
 - Need for improvement in patients with troponin-negative NSTE-ACS and low-risk patients

CPU experience in Germany Summary

 The formation of dedicated chest pain units improved and improves quality-of-care in chest pain patients

Closing remark

Thank you very much for your attention!

